Chickens

Unique chicken line advances research on autoimmune disease that affects humans

FAYETTEVILLE, Ark. — A unique chicken breed is helping researchers better understand vitiligo, an autoimmune disease that affects 1-2 percent of the world’s population.

VITILIGO RESEARCH — Gisela Erf, professor of immunology, holds a Smyth line rooster whose white feathers are the result of vitiligo. The Smyth line, and its parental Brown line, are used to study the autoimmune disease that affects humans. (U of A System Division of Agriculture photo by Paden Johnson)

In vitiligo (pronounced vit-ih-LIE-go) the immune system attacks cells called melanocytes, causing skin pigment to disappear.

The effects are more than skin deep.

“Autoimmune diseases are multifactorial and non-communicable, and one is often associated with other autoimmune disorders. They call it the kaleidoscope of autoimmunity,” Gisela Erf, professor of immunology with the Arkansas Agricultural Experiment Station, said. “Vitiligo in humans, is strongly associated with autoimmune thyroiditis where the thyroid gland becomes attacked by the immune system, and that’s in our vitiligo birds, too.”

Why chickens?

Erf studies the disease using a rare vitiligo-prone chicken breed called the Smyth line, the only animal model for vitiligo that shares all the characteristics of the human condition. These include the spontaneous loss of melanocytes, interactions between genetic, environmental, and immunological factors that drive disease expression, and associations with other autoimmune diseases.

Research with the Smyth line helps scientists observe immune responses that are relatable to humans. Erf recently published a study in Frontiers in Immunology titled “Spontaneous immunological activities in the target tissue of vitiligo-prone Smyth and vitiligo-susceptible Brown lines of chicken,” which was co-authored by Erf’s former graduate students, Daniel M. Falcon and Kristen A. Byrne, and program associate Marites A. Sales.

The study identified the immune mechanisms behind the onset of vitiligo, which could one day inform the development of effective preventative and therapeutic measures for humans.

Erf conducts research through the Arkansas Agricultural Experiment Station as a faculty member of the Center of Excellence for Poultry Science. She holds the Tyson Endowed Professorship in Avian Immunology and teaches classes through the Dale Bumpers College of Agricultural, Food and Life Sciences at the University of Arkansas. The experiment station is the research arm of the University of Arkansas System Division of Agriculture.

Finding answers in feathers

Erf’s study compared the immune responses in the Smyth line to its parental Brown line, which is susceptible to vitiligo but much less likely to develop the disease. A unique feature of this animal model is that the melanocyte-containing target tissue — the “pulp” of small growing feathers — is easily accessible. Scientists can sample it many times before and during the onset and progression of the disease without harming the bird, Erf said.

In fact, based on studying the autoimmune response in the feather pulp, Erf developed this tissue as a skin test-site — a “living test-tube,” she calls it — and a minimally invasive procedure to study immune responses to injected vaccines and other antigens. She has since patented this method.  

“The method came out of these vitiligo studies, and it has been an incredibly successful technique, in my opinion, to study these very complex inflammatory responses where the cells get recruited from the blood to the site of infection or injection,” Erf said.

Examining growing feathers from the Brown line also revealed immune cells entering the pulp, but these cells exhibited anti-inflammatory immune activities, which may be responsible for preventing vitiligo development in these chickens, Erf explained.

The researchers also detected positive correlations that indicate an immune response with regulatory T cells, which stop vitiligo development and killing of the melanocytes.

In the Smyth line, approximately one month before vitiligo becomes visible, an increase in the expression of specific immune regulatory genes was observed. The study states that this early immune activity might play a role in triggering the disease. Overall, their findings align with observations in human studies, with the added benefit of new insights into events before the onset of the disease, Erf added.

This latest study suggests the different responses in Smyth and Brown line chickens could lead to new ways of understanding how the immune system decides between attacking or tolerating melanocytes, Erf said. And that could lead to significant advancements in treatment of autoimmune diseases like vitiligo.

The Smyth chicken was first identified by J. Robert Smyth in 1977 at the University of Massachusetts, Amherst. Erf, who knew Smyth, has worked with the Smyth line since 1989 and maintains the only known research breeding flock in the world.

To learn more about the Division of Agriculture research, visit the Arkansas Agricultural Experiment Station website. Follow us on X at @ArkAgResearch, subscribe to the Food, Farms and Forests podcast and sign up for our monthly newsletter, the Arkansas Agricultural Research Report. To learn more about the Division of Agriculture, visit uada.edu. Follow us on X at @AgInArk. To learn about extension programs in Arkansas, contact your local Cooperative Extension Service agent or visit uaex.uada.edu.

‘Keep the air moving, keep the water cool’ to help poultry flocks survive summer heat

By Ryan McGeeney
U of A System Division of Agriculture 

LITTLE ROCK — With the extreme heat felt across much of the United States this summer, agricultural producers need to take measures not just to protect themselves and their laborers, but also their crops and livestock as well.

IN THE HEAT OF THE DAY — Keeping chickens alive through the summer heat comes down to a few basics. (Division of Agriculture photo.)

Zac Williams, extension poultry husbandry and management specialist for the University of Arkansas System Division of Agriculture, said that for both commercial producers and backyard hobbyists, keeping chickens alive through the summer heat comes down to a few basics.

“Keep the air moving and keep the water cool,” Williams said. “For commercial producers, that means making sure your ventilation system, including exhaust fans and evaporative cooling pads, are working properly. For backyard chicken keepers, that means making sure there’s shade available.

“In either instance, chickens need cool water, and plenty of it,” he said. “It’s not enough to just put out adequate amounts of water in the morning. It’s going to get warm, and that’s just not as effective. In commercial houses, managers need to flush those water lines multiple times a day for the same reason.”

Williams said that if backyard chicken keepers want to put out fans for their flocks, that’s fine. They should not, however, bring live poultry into their homes to avail them of the air conditioning.

“You can bring all kinds of diseases into your house doing that,” Williams said. “I’d never recommend anyone bring chickens into their house.”

Ounce of prevention
Williams warned that if chickens do begin suffering from heat stress, producers will begin seeing production losses. It can be very difficult to bring poultry back from a heat-related illness, so it’s best to be proactive.

“An ounce of prevention is worth a pound of cure,” he said. “Chickens are actually kind of hardy. But if it gets up to 100, all you can do is give them the tools they need to survive.”

He also noted that some producers may add electrolytes to their flocks’ water supply, which can help the animals endure the heat of summer.

Commercial chicken houses in Arkansas produced more than 7.3 billion pounds of chicken meat in 2022, and produced $693 million in eggs.

The Division of Agriculture has several free publications available that producers may find useful, including research-proven techniques for Getting Broiler Houses Ready for the Summer and sprinkler systems that help keep flocks cool.

To learn about extension programs in Arkansas, contact your local Cooperative Extension Service agent or visit www.uaex.uada.edu. Follow us on Twitter and Instagram at @AR_Extension. To learn more about Division of Agriculture research, visit the Arkansas Agricultural Experiment Station website: https://aaes.uada.edu/. Follow on Twitter at @ArkAgResearch. To learn more about the Division of Agriculture, visit https://uada.edu/. Follow us on Twitter at @AgInArk.

Researchers find ways to better cool chickens and conserve water

by George Jared (gjared@talkbusiness.net)

Researchers at the Arkansas Agricultural Experiment Station continued decades of research in 2021 to fine tune a method of direct-cooling chickens with low-pressure sprinklers in tandem with traditional cool-cell pad systems and ventilation fans. The system creates a drier environment and conserves water.

“The 2021 trial aimed to determine the effect of sprinkler technology in combination with cool cell systems on achieving broiler performance during hot weather,” said Yi Liang, associate professor of biological and agricultural engineering and faculty with the Center of Excellence for Poultry Science within the University of Arkansas System Division of Agriculture.

Chickens are big business in the Natural State. Arkansas ranks second in broiler production with 7.42 billion pounds produced with a value of $3.6 billion in 2019, according to the USDA. The broiler industry generated $28.3 billion in the U.S. during 2019.

https://talkbusiness.net/2021/12/researchers-find-ways-to-better-cool-chickens-and-conserve-water/