Jeyam Subbiah

Food safety scientists crank up steam, radio waves to kill salmonella amid spice recall

By Maddie Johnson
University of Arkansas System Division of Agriculture
Arkansas Agricultural Experiment Station

FAYETTEVILLE, Ark. — Bacteria can easily hibernate in low-moisture ingredients such as flour and spices, and food scientists have been working on ways to make them safer with novel technologies.

SPICE SAFETY — Surabhi Wason, Ph.D., used a combination of radiofrequency and steam to sanitize spices in packages while a doctoral student in the food science department. (U of A System Division of Agriculture photo)

Publication of a food safety study on radiofrequency pasteurization and novel steam technology highlights the recent national recall of black pepper for salmonella risk. The June 3 recall brought low-moisture foods to the forefront of public discussion, showing just because bacteria can’t grow well in dry foods doesn’t mean they don’t pose a threat.

Surabhi Wason was the lead author of the study titled “Radiofrequency inactivation of salmonella in black pepper and dried basil leaves using in-package steaming,” which was published in the Journal of Food Protection. She conducted experiments to develop in-package steaming for enhancing the efficiency of radiofrequency pasteurization of spices and evaluate its impact on the spice quality.

“Radiofrequency, also referred to as macrowave, is a long wavelength, non-ionizing electrical form of energy,” Wason said. “The significant application for radiofrequency technology is in the treatment of dry ingredients where microbes are considered dormant and are in the most difficult state to kill.”

Wason explained that the radiofrequency, or RF, generator creates an alternating electric field between two electrodes, causing the polar water molecules in the material to generate friction, which causes the material to heat rapidly and uniformly.

Wason is a former doctoral student of Jeyam Subbiah, head of the food science department, who served as corresponding author for the study. The food science department is encompassed both by the Arkansas Agricultural Experiment Station, the research arm of the University of Arkansas System Division of Agriculture, as well as the Dale Bumpers College of Agricultural, Food and Life Sciences.

Rossana Villa Rojas, assistant professor of practice in the food science and technology department at the University of Nebraska-Lincoln, was a co-author of the study showing that radiofrequency pasteurization and novel steam technology can inactivate salmonella in low-moisture foods, including spices, without significantly compromising quality.

The findings were based on work supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2020-67017-33256. McCormick & Company, Inc. supplied low-moisture food materials for the study.

How it works

When a salmonella is identified on a product quality testing, or during a foodborne illness outbreak, the industry has to recall all products since the last cleaning of the plant, Subbiah explained.

“Food processing plants that process low-moisture foods clean less frequently, often once a year, because water in the plant can increase food safety risks,” Subbiah said. “That means the industry has to recall several days to months of production, which could potentially mean that everything on the shelf, and thousands of other products that used that as an ingredient, have to recall, and it’s a huge financial loss. People don’t realize the magnitude of food safety.”

Under traditional methods, low-moisture foods must be exposed to high temperatures for long periods to kill bacteria. Salmonella and other pathogens like listeria can adapt to harsh environments and stay hidden for years, requiring severe processing to be killed, Subbiah said. Without inactivation, the pathogens can begin growing when met with ideal conditions, like the interaction with water that occurs when spices are used in soup.

Baby formula is another low-moisture food that can become dangerous when rehydrated. Subbiah said Cronobacter sakazakii contamination in baby formula can lead to severe illness and death for babies.

With traditional methods, severe heat treatment diminishes aspects of the food quality such as nutrient content and may damage the package because of the generation of steam, Subbiah said. Scientists can also pasteurize these foods through irradiation, or radiation exposure, but consumer acceptance is low, he added.

Subbiah found himself wondering whether the kind of packaging technology that is widely used for foods like microwavable vegetables could be adapted to allow for the same quick heating of dry foods with the additional step of resealing needed before their sale. To prevent steam buildup from eventually bursting packaging, experts developed a one-way valve that releases the steam and then reseals, which is at the heart of Subbiah’s study.

This new valve technology mimics the in-package sterilization of canned goods and uses radiofrequency heating. Conventional heating methods transfer heat to a product through its surface and take longer to reach the center, but radiofrequency heating generates heat inside an entire product mass evenly through friction generated by the vibrating water molecules in an electric field, much like microwave technology. This way, products are pasteurized while they are already in their final packaging and are heated uniformly, avoiding the risk of overheating the edges before heat reaches the center. This in-package processing cuts the risk of contamination that can occur when products are moved between the pasteurization and packaging stages, and foods are safe from contamination until customers open them.

“The gold standard is to package it in the final form and kill the bacteria, like canning,” Subbiah said.

“This technology shows promise for extending to other products like flour, cereal grains offering a robust solution for diverse food sectors," Wason added. "Moreover, one of the key advantages of radiofrequency pasteurization lies in its continuous processing capability. By implementing a conveyor belt system, products can move seamlessly through the RF chamber, ensuring consistent and efficient pasteurization.”

Sticky situation

Subbiah was first inclined to explore this topic of low-moisture food safety after witnessing the costs of a 2007 peanut butter recall.

QUALITY AND SAFETY — Jeyam Subbiah, head of the food science department, conducts research through the Arkansas Agricultural Experiment Station to improve food quality and retain safety. (U of A System photo)

Recalls for products such as packaged meat require consumers to avoid products processed on a specific day. With dry foods such as peanut butter, though, sanitation of production facilities may happen just once a year, or every few years, to avoid exposing the product to water. This means that in cases of recall, a years’ worth of product, and any other foods that feature it as an ingredient, might pose a health risk for consumers and a financial loss for producers.

The company ended up recalling all peanut butter produced as far back as January 2004, an expected loss of $50-60 million.

In addition to his work with the experiment station, Subbiah also collaborates with the Center for Low-Moisture Food Safety based out of Michigan State University, which includes a stakeholder advisory group of industry professionals that take work like Subbiah’s from the publication to real-world application phase.

To learn more about Division of Agriculture research, visit the Arkansas Agricultural Experiment Station website: https://aaes.uada.edu. Follow on Twitter at @ArkAgResearch. To learn more about the Division of Agriculture, visit https://uada.edu/. Follow us on Twitter at @AgInArk. To learn about extension programs in Arkansas, contact your local Cooperative Extension Service agent or visit www.uaex.uada.edu.

Arkansas to lead $5 million grant-established center to advance robotics in poultry processing

By Fred Miller
U of A System Division of Agriculture

FAYETTEVILLE, Ark. — Researchers in Arkansas and two other states will be using a $5 million grant to increase use of artificial intelligence and robotics in chicken processing to reduce waste in deboning and detect pathogens.

COLLABORATION — The Center for Scalable and Intelligent Automation in Poultry Processing, established by a $5 million USDA-NIFA grant, aims to adapt robotic automation to the poultry processing industry. (U of A System Division of Agriculture photo)

The grant from the U.S. Department of Agriculture’s National Institute of Food and Agriculture will establish the Center for Scalable and Intelligent Automation in Poultry Processing. The center, led by the University of Arkansas System Division of Agriculture, will join researchers from five institutions in three states in efforts to adapt robotic automation to chicken meat processing.

Project director Jeyam Subbiah said the Arkansas Agricultural Experiment Station, the research arm of the Division of Agriculture, will receive $2.2 million from the grant primarily to focus on food safety automation for poultry processing plants. The grant is for four years.

Subbiah is a professor and head of the food science department for the Division of Agriculture and the Dale Bumpers College of Agricultural, Food and Life Sciences at the University of Arkansas.

The Georgia Institution of Technology, better known as Georgia Tech, is a major partner in the project, Subbiah said. $2.1 million of the grant will go to Georgia Tech to focus on automating the processing lines that turn chickens into meat.

The remaining grant money will be divided between Julia McQuillan, Willa Cather professor of sociology at the University of Nebraska-Lincoln, and Brou Kouakou, associate dean for research at Fort Valley State University in Georgia.

Jeff Buhr, a USDA Agricultural Research Service scientist, will contribute his expertise in broiler physiology to guide robotic deboning of meat, Subbiah said.

Georgia is the nation’s top broiler producer. Arkansas is number 3, according to 2021 figures from USDA.

Meeting the challenge

The recent impetus to automate chicken processing began with the COVID-19 pandemic, Subbiah said. The illness spread quickly among workers on the processing line. Since the worst of the pandemic, the poultry industry, like many others, has been having trouble hiring enough workers.

“Poultry processing lines began 70 to 80 years ago,” Subbiah said. “Since then, there have been only incremental changes in technology. Today, there’s a need for transformative change.”

Robotic hands are not adept at holding a chicken, he said. New technology is needed to prevent dropping slippery meats. Separating the carcasses into cuts of meat is also tricky.

“It’s hard enough to teach people how to use a knife with precision,” said Dongyi Wang, assistant professor of biological and agricultural engineering for the Arkansas Agricultural Experiment Station. “Robotics are fit for repetitive tasks but don’t do well with the precision needed to cut up chicken products.”

For example, he said humans could feel when a knife hits a bone. In contrast, existing automation in poultry processing, like deboners, wastes a lot of meat.

“Human deboners leave about 13 percent of meat on the bones,” Subbiah said. “Automated deboners leave 16 to 17 percent. On an industrial scale, that’s a significant loss in value. We will use artificial intelligence and virtual reality to improve precision and reduce wastage.”

Automation can relieve labor shortages, Subbiah said. It also allows plants to locate in rural areas with a smaller labor force but nearer poultry houses and with lower property costs.

Initially, people working remotely may help advance robotic processing. Subbiah envisions workers logging on from home with virtual-reality goggles and haptics gloves to control robots located miles away.

While working remotely, the labor force will teach artificial intelligence how to cut up chickens of varying sizes and shapes.

“Automated machines right now are programmed to debone or cut up chickens based on an average size and shape. But no chicken is that size or shape,” Subbiah said. “Robot-wielded knives cut meat poorly. The machines have to learn how to adjust to the reality of random sizes and shapes.”

Research team

Arkansas’ research will involve scientists from at least three departments:

  • Subbiah, Kristen Gibson and Philip Crandall from the department of food science — Gibson is also affiliated with the Center of Excellence for Poultry Science

  • Casey Owens and Tomi Obe from the department of poultry science and the Center of Excellence for Poultry Science

  • Dongyi Wang and Yanbin Li from biological and agricultural engineering — Wang also has an appointment in food science, and Li is affiliated with the Center of Excellence for Poultry Science

The primary focus of Arkansas Agricultural Experiment Station researchers will be to automate food safety practices. Subbiah said they will develop robots that monitor processing lines for pathogens like Salmonella and maintain clean and safe spaces and equipment.

Wang and Subbiah will also develop hyperspectral imaging to detect plastics in chicken meat, Subbiah said. Wang will also develop a mobile robot that is equipped with a biosensor invented by Li to produce a biological map of the facility. The “biomap” will be used to evaluate the efficacy of sanitation.

Where the biomap indicates potential hot spots, the robot will automatically collect swabs to test for bacteria. Gibson and Obe will analyze the biomap and develop strategies to enhance food safety.

Owens and Crandall will conduct outreach activities to extend new knowledge and technology to the industry. 

Georgia Tech’s participating scientists are all faculty of the Georgia Tech Applied Research Corporation:

  • Doug Britton, manager of the Agricultural Technology Research Program

  • Colin Trevor Usher, senior research scientist and branch head of robotics systems and technology, Agricultural Technology Research Program

  • Ai-Ping Hu, principal research engineer, Agricultural Technology Research Program

  • Konrad Ahlin, research engineer, Intelligent Sustainable Technologies Division

  • Michael Park, research engineer, Intelligent Sustainable Technologies Division

  • Benjamin Joffe, research scientist, Intelligent Sustainable Technologies Division

  • Shreyes Melkote, the Morris M. Bryan, Jr. Professorship in Mechanical Engineering, associate director of the Georgia Tech Manufacturing Institute and executive director of the Novelis Innovation Hub

Collaborative research

“We are thrilled to partner with our colleagues here in the Division of Agriculture, as well as our colleagues at Georgia Tech and the other participating institutions on this exciting project,” said David Caldwell, head of the Division of Agriculture’s poultry science department and director of the Center of Excellence for Poultry Science.

“We expect the findings from these coordinated research projects will be impactful for our stakeholders in the commercial poultry industry here in Northwest Arkansas and throughout the entire industry,” Caldwell said. “This project will help keep moving technology forward in processing and food safety of poultry.”

Britton said his team was very excited to work on this project with the University of Arkansas System Division of Agriculture, Fort Valley State University, and the University of Nebraska-Lincoln.

“The ultimate goal is to drive transformational innovation into the poultry and meat processing industry through automation, robotics, AI, and VR technologies,” Britton said. “Building on years of work in the GTRI Agricultural Technology Research Program, we are pleased to see that the USDA-NIFA has chosen this team to continue these efforts.”

Hu said, “GTRI is excited to work on such an impactful project with our fellow institutions. The last few years have highlighted the need for new technological innovations in the meat and poultry production space, which we plan to address through robotics, virtual reality, and artificial intelligence.”

McQuillan, from the University of Nebraska-Lincoln, said it was exciting to be part of a multi-institutional team discovering innovative ways to improve poultry processing through automation. “As a social scientist who has studied work and health challenges and who is starting to work with extension faculty in Rural Prosperity Nebraska, this project provides great new opportunities,” she said.

McQuillan will study the effects of robotics on poultry industry laborers and how they perceive the technology.

“We hope eventually to bring new owner-operated businesses to rural areas,” McQuillan said. “Collaborating with food scientists, computer scientists, extension faculty and robotics engineers provides amazing opportunities to understand the meanings of innovations for entrepreneurs, workers, and other stakeholders, and to advance fundamental theories about science, technology, and society in sociology.”

Kouakou, from Fort Valley State University, will investigate the application of technology developed in this project to other meat processing industries. He said he was excited about working with this team of collaborators.

“Our state-of-the-art meat processing plant at the Georgia Small Ruminant Research and Extension Center on campus will serve as a resource to extend the technology developed by the Center for Scalable and Intelligent Automation in Poultry Processing to red meat species,” Kouakou said. “This research will greatly benefit our students and processors to observe artificial intelligence in meat processing.”

To learn more about Division of Agriculture research, visit the Arkansas Agricultural Experiment Station website: https://aaes.uada.edu/. Follow us on Twitter at @ArkAgResearch and on Instagram at @ArkAgResearch. To learn more about the Division of Agriculture, visit https://uada.edu/. Follow us on Twitter at @AgInArk.