Rupesh Kariyat

Frequent mowing puts poisonous weed into survival mode

By John Lovett
University of Arkansas System Division of Agriculture
Arkansas Agricultural Experiment Station

FAYETTEVILLE, Ark. — A study of the effects of mowing on a common weed has found that what doesn’t kill you can make you stronger.

FLOWER FEEDING — The flowers of silverleaf nightshade (Solanum elaeagnifolium) are consumed less by natural predators like this tobacco hornworm (Maduca sexta) if the plant is frequently mowed due to defense mechanisms. (Photo courtesy of Alejandro Vasquez)

A study published in Nature’s Scientific Reports has found that frequent mowing of Solanum elaeagnifolium may help create a “superweed.”

Solanum elaeagnifolium — also known as silverleaf nightshade — can be found from south Texas to South Africa and Greece, infesting fields and soaking up valuable nutrients intended for cash crops. The weed with purple flowers – sometimes white and light purple – has prickly spines and poisonous berries.

Relatives of the plant, including Solanum ptychanthum or black nightshade, and Solanum carolinense, or Carolina horsenettle, also produce toxic berries and are native to Arkansas. It’s a family that also includes some friendly crops such as tomatoes, potatoes, peppers and eggplants.

OBSERVATIONS — Alejandro Vasquez, a Ph.D. student at the University of Arkansas, is the lead author of a study on the effects of frequent mowing silverleaf nightshade. (Courtesy photo)

Rupesh Kariyat, an associate professor of entomology and plant pathology with the Arkansas Agricultural Experiment Station, has been studying silverleaf nightshade for more than a decade. Kariyat began the study while at the University of Texas Rio Grande Valley, when he and his graduate student Alejandro Vasquez took on what turned into a five-year, two-part study to observe the effects of frequently mowed silverleaf nightshade. Kariyat joined the experiment station, the research arm of the University of Arkansas System Division of Agriculture, in 2022.

Although studies have often highlighted weed fitness and defense traits resulting from disturbances like mowing, most were limited to foliar, or leaf, defenses, Kariyat said. That changed when Vasquez and fellow master’s biology students at the University of Texas Rio Grande Valley monitored fields of mowed, unmowed and frequently mowed silverleaf nightshade in and around Edinburg, Texas.

“Alejandro’s question was, ‘how do these flowers differ between mowed and unmowed plants?’” Kariyat said. “‘And does that have consequences for the insects that actually feed on them?’”

Self-defense strategies

Findings in both studies showed that the more silverleaf nightshade was mowed, the more it developed ways to avoid destruction, Kariyat said. The taproot went down further, nearly 5 feet deep, in the first generation of mowed plants. More spikes popped out on the stem as a defense against caterpillars feeding on the flowers. The flowers became more toxic to caterpillars, leading to less pressure from natural predators.

Like time bombs, the plant produced some groups of seeds that germinated faster and others that were delayed. This “staggered” germination was the plant’s way to ensure survival over the long haul.

“You are trying to mow these plants so that the plants are getting eliminated,” Kariyat said. “But what you are actually doing here, you are making them much worse, much stronger.”

Tilling areas with silverleaf nightshade also spreads the plant because the rhizomic roots, like many weeds, can propagate asexually over multiple years and growing seasons.

The observations of mowed, unmowed and frequently mowed areas with silverleaf nightshade provide evidence that could prompt further studies by weed scientists on best management practices, Kariyat said.

Since the studies focus solely on silverleaf nightshade, Kariyat said other weeds — even the plant’s family relatives — may or may not react the same way to frequent mowing. However, the study does provide more insight into the defensive capabilities of plants pitted against human disturbance.

“This should be something that we consider when we make management plans,” Kariyat said of the plant’s defenses. “Management practices need to be better understood using the ecology and biology of the species and the other species which interact with them.”

Kariyat and Vasquez published their results in April with an article titled “Continuous mowing differentially affects floral defenses in the noxious and invasive weed Solanum elaeagnifolium in its native range.” Vasquez, now an entomology and plant pathology Ph.D. student at the University of Arkansas, was the lead author. Co-authors included Kariyat, Alexa Alaniz, and Robert Dearth, founding director of the School of Integrative Biological and Chemical Sciences at the University of Texas Rio Grande Valley.

“As scientists, we want our research to be accessible and applicable to anyone, and mowing is a concept the world at large can understand,” Vasquez said.

The initial study was published in 2021 with an article titled “Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits.” The lead author for that study was Jesus Chavana, with co-authors Sukhman Singh, Bradley Christopherson, Alexis Racelis, Vasquez and Kariyat, all with the University of Texas Rio Grande Valley at the time.

For more on the topic, please check out the Food, Farms & Forests podcast episode “Mow less: Studies Show Less is More When Mowing Noxious Weed.”

PLANTS AND INSECTS— Rupesh Kariyat, associate professor of entomology and plant pathology with the Arkansas Agricultural Experiment Station. (U of A System Division of Agriculture photo)

To learn more about Division of Agriculture research, visit the Arkansas Agricultural Experiment Station website: https://aaes.uada.edu. Follow on Twitter at @ArkAgResearch. To learn more about the Division of Agriculture, visit https://uada.edu/. Follow us on Twitter at @AgInArk. To learn about extension programs in Arkansas, contact your local Cooperative Extension Service agent or visit www.uaex.uada.edu.

Kariyat: Global study on plant-herbivore interactions ‘opens window of possibilities’

By John Lovett
University of Arkansas System Division of Agriculture
Arkansas Agricultural Experiment Station

FAYETTEVILLE, Ark. — Plant life is a hard life when it comes to fending off insects, and the further one gets from the equator the more difficult it can be, according to a study on plant-insect interactions published last month in the journal Science.

GLOBAL STUDY — Rupesh Kariyat, associate professor of crop entomology with the Arkansas Agricultural Experiment Station, took part in a global study on plant-insect interactions that was published in the journal Science. (U of A System Division of Agriculture photo by Paden Johnson)

For years to come, generations of entomologists and plant pathologists will look to the study's global data set that confirms long-held assumptions and “opens a window of possibilities,” says Rupesh Kariyat, associate professor of crop entomology with the Arkansas Agricultural Experiment Station.

Kariyat, who participated in the study with nearly 200 other scientists at 790 sites worldwide, said the data gathered on 503 plant species in 135 families will spawn many new studies on plant-herbivore interactions.

The study, “Plant size, latitude, and phylogeny explain within-population variability in herbivory,” was published last month in Science, the American Association for the Advancement of Science journal. Phylogeny is the study of how related groups of organisms evolve over time, and herbivory is the act of feeding on plants.

Kariyat said the study’s focus was to develop a more complete understanding of insect herbivory, which could eventually lead to integrated pest management recommendations and assist entomologists and plant pathologists studying the impacts of climate change on plant-insect-pathogen interactions.

“The study looks at how insects feed on plants at a global scale,” Kariyat said, describing how researchers studied the variability of feeding rates based on plant type, latitude and insect species. “A long-lasting assumption has been that plant-insect interactions — not pollinators, but insects that feed on plants — are highly variable, and you cannot fit it into one specific box.”

Kariyat said the study confirmed what he calls “a cornerstone in ecology.” Variability in insect eating habits, the study shows, is substantial across different members of the same species of plants. Now, they also have a ton of comparative data to go along with it.

Latitude, which measures the distance from the Earth’s equator, was found to be a significant factor affecting herbivory variability. Farther away from the equator, the growing season is shorter, which results in reduced time for herbivore foraging. So, more kinds of insects feed on the same plant species and its relatives than would be seen closer to the equator, Kariyat explained.

With the volume of data collected during this study, the authors hypothesize that herbivory may maintain plant diversity at latitudes closer to the equator because it is a “more consistent force within plant populations.” In other words, there is less competition for food sources nearer the equator for insect herbivores because of the increased diversity in plant life. This results in less variability of insect feeding on plant populations.

An additional hypothesis is that herbivory is more variable among small plants than large plants, which could explain why trees, for example, invest more of their biomass in defense, the authors noted. Kariyat said some tree defenses from insect herbivores include toxic secondary metabolites such as tannins and tree sap.

Keeping it together

While scientists have looked at various populations of plants on different latitudes for decades to understand how plants create defenses against insect feeding and the variability of herbivory at different latitudes, Kariyat said the studies had yet to be done with the same protocol. That changed when scientists formed the Herbivory Variability Network about four years ago.

The network is led by Will Wetzel with Montana State University’s department of land resources and environmental sciences, Moria Robinson of Michigan State University’s department of entomology, Phil Hahn with the University of Florida’s department of entomology and nematology, Nora Underwood and Brian Inouye with Florida State University’s department of biological science and Susan Whitehead with Virginia Tech’s department of biological sciences.

“They had this beautiful idea of ‘Why don’t we ask people who work in herbivory, across the globe if they can go out and collect data on their plants with a protocol that we set, so that all the data, whether you collected it from Bangladesh or the Democratic Republic of Congo, are exactly the same,” Kariyat said.

When Kariyat was a faculty member at the University of Texas Rio Grande Valley several years ago, he became involved with the Herbivory Variability Network by chance.

It was a fortunate opportunity, Kariyat said, not just because the group was looking for data on plants native to south Texas.

For the study, Kariyat enlisted his graduate student, Mandeep Tayal, to assist in collecting and curating plant specimens when COVID-19 protocols limited access to the lab but not the field. Zoom meetings that became common during the pandemic also facilitated meetings with group members worldwide, Kariyat said.

Tayal, listed as a co-author of the study, is pursuing his entomology doctorate at Clemson University. Kariyat expects the study could open many opportunities for Tayal and provide reams of data for scientists now and in the future.

Prior to this study, Kariyat authored or co-authored 68 published research papers. Although he was a smaller piece of the puzzle on the study published in Science, Kariyat said this one has attracted the most attention from colleagues across the country.

“We think this is going to make a splash in the field and will be cited a lot when they work on this,” Kariyat said of the study. “It opens a window of possibilities for anyone, anywhere, to look at the data and start their own questions and answers. All of the raw data can be requested through the Herbivory Variability Network.”

Kariyat has already begun a spin-off study with Alejandro Vasquez Marcano, a crop entomology Ph.D. student with the Arkansas Agricultural Experiment Station, which is the research arm of the University of Arkansas System Division of Agriculture. This new research evaluates insect herbivory damage to plants, including flowers, fruits, and seeds, during the reproductive stage.

INSECT LAB — Rupesh Kariyat inspects Petri dishes with rice leaves and fall armyworms at his lab on the University of Arkansas, Fayetteville campus. (U of A System Division of Agriculture photo by Paden Johnson)

How to use it

With the information gathered from the study, Kariyat said researchers can build collaborations and perform comparison studies on a wide range of plant species and their relatives to understand better how much variation in herbivory there is on those species.

For example, he said, with the information gathered they can see how much variation on herbivory there is on many plants in question and get in touch with people who worked on similar studies. Some examples of questions crop entomologists would ask include: “How much do insects feed on a particular plant? And is there more feeding in the early or late season? Then, Kariyat said, they can question if the behavior is associated with global warming, climate change, or invasive species.

Kariyat mentioned the spotted lanternfly as an invasive species that has established itself in the Northeast United States and is one of growing interest to entomologists because they feed on a wide range of fruit, ornamental and woody trees.

“One thing we really want to do is be proactive,” Kariyat said of invasive species. “Once an insect population is established, then there is no eradication. It is just management. But if we know it will come here, we can devise methods to restrict movement and reduce impact or incidence.”

Kariyat also works with the Cooperative Extension Service, the outreach arm of the Division of Agriculture, and teaches courses through the Dale Bumpers College of Agricultural, Food and Life Sciences.

To learn more about Division of Agriculture research, visit the Arkansas Agricultural Experiment Station website: https://aaes.uada.edu. Follow on Twitter at @ArkAgResearch. To learn more about the Division of Agriculture, visit https://uada.edu/. Follow us on Twitter at @AgInArk. To learn about extension programs in Arkansas, contact your local Cooperative Extension Service agent or visit www.uaex.uada.edu.

Texas-to-Arkansas summer externship to bolster ag research, food science jobs

By Brittaney Mann
U of A System Division of Agriculture

FAYETTEVILLE, Ark. — Entomologist Rupesh Kariyat developed a summer externship program with the University of Texas Rio Grande Valley to empower Hispanic student researchers of agriculture and food science.

AG FOOD LIFE — Rupesh Kariyat, associate professor of crop entomology for the Arkansas Agricultural Experiment Station, will lead an externship program with the University of Texas Rio Grande Valley. (U of A System Division of Agriculture photo by Fred Miller)

The project aims to provide students the training necessary to work in agriculture. Kariyat, associate professor of crop entomology for the Arkansas Agricultural Experiment Station, received a $481,000 grant from the U.S. Department of Agriculture’s Research and Extension Experiences for Undergraduates program to fund the summer externship for three years.

The Arkansas Agricultural Experiment Station is the research arm of the Division of Agriculture. Kariyat also works with the Cooperative Extension Service and teaches courses through the Dale Bumpers College of Agricultural, Food and Life Sciences.

Kariyat said he was inspired to develop this program for two primary reasons: alleviating the shortage of skilled people in agriculture and food sciences jobs and addressing the underrepresentation of Hispanic people in those fields.

“I am looking forward to seeing that the students have a great experience — the best experience so far in their career,” Kariyat said.

Six to eight undergraduate students who are two years into a biology, chemistry or environmental science program will attend the University of Arkansas summer session in Fayetteville. The program will pay for travel and any tuition costs, and students will receive a $4,000 stipend for their work. The grant also provides funds for collaborating faculty members to receive a small stipend and purchase supplies.

Kariyat is collaborating with Bradley Christoffersen, assistant professor in the department of biology at the University of Texas Rio Grande Valley. Christoffersen will receive $30,000 of the grant as a stipend for his work to help with recruitment and to fund an orientation for the students before they leave Texas.

Kariyat originally designed the grant program while at the University of Texas Rio Grande Valley. When he joined the Arkansas Agricultural Experiment Station in 2022, he adapted the grant to Arkansas while maintaining the parts he thought were most important.

“I thought it would be a good idea to keep the core idea of the grant impact, which is to empower Hispanic students,” Kariyat said. 

An undergraduate research opportunity

Students will work Monday through Friday, from May 22 to July 28, to complete a short-term research project in the lab of their choosing with collaborating faculty members.

Kariyat said he hopes the research and data that students generate will lead to a research poster or even be part of a research manuscript. “That would be helpful for the students, so some science comes out of it, interpersonal relationships, exposure for the students and myself. All these things.”

Kariyat said he also hopes that the students will consider the university for graduate school after spending a summer at the University of Arkansas.

Arkansas faculty collaborators for the year 2023 include:

  • Emily McDermott, assistant professor of entomology and plant pathology

  • Asia Kud, assistant professor of entomology and plant pathology

  • Neel Joshi, associate professor of entomology and plant pathology

  • Adnan Alrubaye, assistant professor of poultry science and biological sciences

  • Rupesh Kariyat, associate professor of entomology and plant pathology

  • Alejandro Rojas, assistant professor of entomology and plant pathology

Kariyat said he thinks this undergraduate opportunity may parallel his experience joining the Division of Agriculture.

“I was amazed by the Division of Agriculture and all these resources that we have,” Kariyat said reflecting on when he attended a faculty orientation program, the “Teaching, Research and Extension Awareness Training” program under the leadership of Nathan McKinney, associate vice president for agriculture and assistant director of the experiment station.

“I am also looking forward to meeting with all these different faculty and different programs on campus,” Kariyat said. “I hope that this will lead into more interactions for me and others together, and then maybe it will lead into writing more grants like this.”

To learn more about Division of Agriculture research, visit the Arkansas Agricultural Experiment Station website: https://aaes.uada.edu. Follow on Twitter at @ArkAgResearch. To learn more about the Division of Agriculture, visit https://uada.edu/. Follow us on Twitter at @AgInArk. To learn about extension programs in Arkansas, contact your local Cooperative Extension Service agent or visit www.uaex.uada.edu.